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Abstract

A simulated inverted pendulum consisting of a bob on a shaft
hinged to a movable cart is controlled by a hierarchy of 5 simple con-
trol systems. The simulation of the physical system treats the cart
and bob as free masses connected by a spring acting in the direction
of the shaft. No trigonometric functions are required. The user of
the program can set a reference position with the mouse, after which
the control systems move the cart carrying its balanced pendulum to
place the bob at any selected position in the x direction. This is an ex-
perimental design, with no serious attempt to optimize performance.
Nevertheless, performance is better than a human being could pro-
duce.
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1 Introduction

This paper addresses two subjects relating to simulation and control, the
first being a simplified method for simulating a mechanical system and the
second being a method for achieving control of an inverted pendulum. The
methods may be suggestive of broader applications, and are presented here
despite their incomplete form so that others may help extend the principles.

The test bed is a computer-simulated pendulum mounted upside down
on a simulated movable cart. The shaft and bob are hinged to a cart that
can roll in the x direction on rails. The plane of motion of the pendulum is
vertical and includes the direction of motion of the cart. The first phase of
this project involves simulating the pendulum itself in a way that appeals
only to fundamental physical relationships rather than solutions of ana-
Iytical equations. The second phase involves developing a control system
consisting of subsystems that control successively higher time-integrals of
physical variables until a level is reached that can control the position of
the bob in the x direction. Each control subsystem is very simple.

2 Simulating the pendulum

The mechanical assembly being simulated consists of a rolling cart and a
bob, each treated as a point-mass, and a shaft connecting the bob to a hinge
on the cart. The bob weighs 1 Kg, the cart weighs 0.1 Kg, and the shaft is
considered weightless. See the upper part of Fig. 1.

The cart is confined to motion along the x axis; the bob can move in two
dimensions, x and y. The two masses are connected by the shaft, which is
not considered rigid as in the usual physical approximations, but is treated
as a spring with a resting length LO. The spring can extend or shorten, but
does not bend. When the bob and the cart are in specific positions, the
distance between their centers is the length L of the shaft, and in general
this length implies a force of a magnitude

F = ke * (L — L0) 1)
where
F = forcein newtons,
ke = spring constant, newtons/meter
L = actual length of shaft, stretched or compressed,
LO = resting length of shaft



The force generated by the spring acts along the direction of the shaft
between the bob and the cart, pulling them together or pushing them apart.
The result is to accelerate both objects: the cart to the left or right along its
rail, and the bob in some direction in x-y space. Computing the acceleration
is simplified by computing x and y acceleration separately.

For the bob, the x force Bob.fx is simply the ratio of the x displacement
of the bob relative to the cart divided by the shaft length L, times the force
in the direction of the shaft. Since the force along the hypotenuse of the
triangle is known, we can compute the x and y forces using similar triangles
instead of trigonometric functions. The acceleration is the force divided by
the mass, Bob.Mass:

Bob.Ax = F*(Bob.x - Cart.x)/(Bob.Mass*L)
The y acceleration is
Bob.Ay = F*(Bob.y - Cart.y)/(Bob.Mass*L)

For the cart, the expressions are the same except that ”cart” is substituted
for ”bob” in the variable names !

We have the x and y accelerations of the bob and the x acceleration of the
cart, so we can proceed to integrate once to get velocity and again to get
position in both the x and y directions for both masses. The integration
is done over a very short time-duration (here 0.0001 second) to get a new
set of x and y positions for the bob and cart. Then, with the bob and cart
in slightly different new positions, we can compute the new length of the
shaft, new forces and accelerations, and new bob and cart positions to use
during the next ten-thousandth of a second. This is the basic process of
simulation in which we compute the new state of a system after a very
short time interval, and then compute the new forces acting on the system
during the next time interval. This process is repeated millions of times
during a run of a simulation.

1The notation here is that of computer programming, not normal mathematics. The
explicit multiplication sign (*) allows variables to be given multiple-letter names rather than
being represented by single letters. Variables are grouped into records” which can contain
lists of symbols. For example, the record named ”Bob” has sub-symbols x,vx,ax,fx,y,vy,ay,
and fy. The letter x indicates position, v is velocity, a is acceleration, and f is force. Thus
Bob.ay means the y direction of acceleration of the Bob, Cart.vx means the x direction of
velocity of the Cart, and Bob.y means the y position of the Bob. With this key, the equations
in the upper part of Fig. 1 become self-explanatory.



This permits us to simulate the behavior of the system without going
through an abstract mathematical analysis. This method is very close to
working with the physical system itself, and has the great advantage that
nonlinear relationships are just as easy to work with as linear ones.

The computer program actually used calculates an added force depen-
dent on the velocity of extension or contraction of the shaft; the amount of
this ”viscous damping” force is selected to make any high-frequency os-
cillations of the masses at the ends of the spring damp out rapidly. The
spring constant used for the shaft is about 10 million newtons per meter,
so the shaft is very stiff: a weight of 1 kilogram hanging from the shaft
would stretch it by about one micron or 25 millionths of an inch. The shaft
is hardly distinguishable from the classic "’rigid rod” used in mathematical
analysis of similar mechanical systems. But its non-rigidity makes all the
difference in the analysis.

There are several practical advantages of this method of simulating a
mechanical system. It is not necessary to find mathematical forms for all
the relationships. No differential equations have to be solved analytically.
No trigonometric functions, which are slow to compute, are used. One
point that does need investigation is how close this way of treating the
physical system comes to an exact analytical representation of its behavior.

3 The Control Systems

Two sets of control systems are used. The first set positions the cart, and
the second set positions the pendulum bob by using the cart-positioning
systems.

A force applied to the cart in the x direction will cause it to accelerate,
its velocity increasing at a constant rate for a constant applied force. In Fig.
1. , the smallest closed loop in the lower right corner is the cart velocity
control system. For all control systems it is assumed that a suitable sensor
for the controlled variable, here linear velocity, exists.

The sensed velocity in the x direction, Cart.vx, is compared with a ref-
erence velocity signal coming from above, and the error signal, the differ-
ence, is amplified and converted to a force applied to the cart. Everything
in this loop responds proportionally except for the time-integration in the
box, which represent the conversion of applied force to acceleration and
the conversion of acceleration to velocity, which are basic physical rela-
tionships. This loop, with one integration in it, is inherently stable. If the
output parameter (here, a factor of 200) is large enough, the sensed velocity



will closely track the reference velocity, shown entering the comparator (C)
from above. The feedback involved in this control process will see to it that
changes in the sensed velocity are nearly simultaneous with variations in
the reference signal, so the control system as a whole behaves very nearly
like a proportional link. It is this property of negative feedback control that
makes the hierarchical control process so easy to stabilize.

The controlled velocity is integrated again to calculate the position of
the cart — in effect, velocity is multiplied by elapsed time to get distance
traveled (over a period of 0.0001 second). In the next hiigher control sys-
tem, the sensed distance is compared with a reference distance signal by
the second level comparator (C in a box), the error signal being amplified
to become the reference velocity for the first-level system. Because the first-
level integration has been made almost into a proportional response, the
second loop can be made very sensitive without causing instability. In this
case the error signal is multiplied by 200. The result is that the cart position
follows the reference position signal very closely and quickly.

The cart, with the bob standing approximately vertically above it, must
move in the direction of lean of the bob to create a lean in the other direction
and slow the bob to a stop. To achieve this, the present strategy was first to
get control of bob acceleration, use that to get control of bob velocity, and
finally to use that to get control of bob position.

The acceleration of the bob is affected by the distance of the cart to the
left or right underneath the bob. The first bob control system senses the
cart position relative to the bob, and keeps it at whatever relative position
is set by the reference signal. As the bob accelerates left or right, the cart
also accelerates, keeping the angle of lean and the acceleration constant.

The bob acceleration is integrated (by the physics of nature) to generate
the bob velocity. In the second bob control system, bob velocity is sensed
and compared with a reference velocity, and the difference or error is am-
plified to produce the reference signal for the acceleration control system.

To establish a velocity to the right, the cart must move at first to the left,
creating a lean of the bob to the right. Then, as the velocity increases toward
the reference velocity, the lean decreases (the cart moves right and catches
up to the bob), and the bob then continues moving at the specified velocity
while remaining upright above the cart. All this happens completely au-
tomatically; the cart is made to move left when the acceleration is too low,
and right when it is too high, and that is all that is necessary to do.

Finally, bob velocity is integrated as in nature to produce bob position,
and bob position is compared with a reference position to produce a po-
sition error signal. This error signal is amplified to generate the velocity



reference signal, closing the final loop.

4 Limits of performance

The forces that balance the bob are actually produced by gravity. The con-
trol systems, by moving the supporting cart left and right underneath the
bob, can direct these gravitational forces to create the necessary balancing
forces. However, this can work only if the bob remains within some fairly
small angle of the vertical over the cart (about plus and minus 30 degrees).
Within this range, a leftward movement of the cart produces a rightward
acceleration of the bob. As the bob moves out of this range, the direct effect
of cart movements on the bob (through the shaft) begins to predominate.
This can be seen by imagining the bob to have toppled over by 90 degrees
so the shaft is parallel to the x axis. Now when the cart moves leftward,
the bob can only move left (instead of right). Somewhere between the ver-
tical and this 90 degree orientation, there is a transition from one sign to
the opposite sign of the effect of moving the cart. Since the direct effect is
opposite to the gravitational effect, there comes a point where the negative
feedback in our control systems turns into positive — and very much larger
— feedback effects. At that point the program goes into runaway and halts
when the variables head towward infinite values.

In a truly complete model, one that works as much like a human system
as possible, runaway would not happen. Instead, a higher-level system
would turn off the balancing control systems before they get into a runaway
state, and substitute another system, perhaps one that swings the bob in
large loops back and forth until it comes to a stop for a moment somewhere
within the effective control range. Then balancing could be resumed. Real
human beings behave just like this. If a disturbance moves the bob out of
the critical range, the human being will start into a runaway process, but
before it can go very far, a completely different mode of behavior will take
the place of balancing.

Since this higher-level control is not part of this model, runaway is
avoided here simply by limiting the output of the position control system,
which limits the speed reference signal.

5 Performance of the simulation

When the program starts, the bob is initialized to a position 0.1 radian off
the vertical, with the position reference signal set to zero and the cart at



the zero of the x-axis. The computer mouse controls the position reference
signal.

The cart immediately moves under the bob and the bob quickly comes
into balance. It remains in balance indefinitely with no visible movement.
See screenshot in Fig. 2.

Now the user can use the mouse to move the reference position to ei-
ther side. On the screen, the cart immediately moves opposite to the mouse
movement, making the shaft and bob lean the way the mouse went. The
cart and bob accelerate to a constant velocity and coast for a while with the
bob vertical again. Then, as the bob approaches the new reference posi-
tion, the cart speeds up and gets ahead of the bob. The resulting backward
lean decelerates the bob. As the bob approaches the reference position, the
backward lean decreases, becoming zero just as the bob becomes stationary
at (or very close to) the new reference position.

This behavior looks complex and programmed, but it is in fact neither.
The complex motions are a natural result of the behavior of the organiza-
tion shown in the lower half of Fig. 1. There are no tests for different logical
conditions, and there are no logical rules in effect (as in ”fuzzy logic” con-
trollers). This is a set of 5 very simple continuous analog controllers.

6 Conclusions

There were two primary objectives in constructing this stimulation. One
was to test the idea of simulating mechanical systems in terms of funda-
mental physical laws, not employing ’rigid rods.” The other objective was
to test the idea that complex control systems could be analyzed into hier-
archical levels, with the lowest levels controlling the highest derivatives of
the variables to be controlled. The results are encouraging in both cases.

In this preliminary effort, no attempt was made to find optimum pa-
rameter settings to get the greatest stability and speed possible. In fact
this could be claimed as another positive result, for the idea was to see if
there could be an approach to simulating control processes that bypasses
all the complexities so often found in textbooks on this subject. The au-
thor, however, would be embarrassed to make that claim, since the truth
is that complex methods of control system analysis are mostly beyond his
abilities.

It may be, however, all such disclaimers aside, that the methods out-
lined here could be developed into a much more systematic and useful
approach to both simulation and control. Simulating physical systems in



the usual way gets extremely complex and requires advanced mathemati-
cal abilities; the same applies to simulating and analyzing control systems.
Any method that promises to simplify and streamline such analyses, while
of little interest to mathematical geniuses, might well be worth developing
for the sake of the rest of us. Anyone interested is warmly encouraged to
help carry this exploration further.

William T. Powvers

Durango, CO
May 24, 1998
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