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Abstract

In this paper we present some preliminary investigations into the devel-
opment of an active vision system with the aim of developing a real-world
model of simple visual behaviour, based upon a control theory [4] view of
purposive behaviour. The goal of the system is to control its �xation with
respect to objects of a relatively complex nature.
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1 Introduction

Previous work in the area of object recognition has concentrated mainly on
matching geometric models with information derived from single, mainly, im-
ages. Research that has involved multiple images, whether from stereo or from
sequences obtained from mobile sensors follows a similar rationale with addi-
tional information from the extra images enhancing the construction of the
observed model. The main in
uence on such computer vision research has been
David Marr [2] who proposed a computational, reconstructive approach to vi-
sual processing that has little to do with the vision of natural living systems.
The success of other object recognition research in dynamic scenes has been
limited to the tracking of simple outlines, motion and objects of a single colour
[3, 1, 6].

The work presented in this paper represents a shift away from traditional
approaches of computer vision towards a more natural control model based on
a hierarchy of signals exempli�ed by Powers' Perceptual Control Theory (PCT)
[4]. The methods employed in this system follow the standard design of PCT
controllers along with conventional computer vision techniques of segmentation.
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2 Scene representation

For the purposes of biological plausibility and computational e�cacy the scene
as viewed by the tracking system is represented by a distribution of visual
elements similar to that of the human retina. The centre of the �eld of view is
sampled at a high resolution decreasing logarithmically to to the periphery.

The top half of �gure 1 shows what

Figure 1: The foveal representation of
a well-known cartoon character

such a view would look like. Each
square area represents one colour in-
put signal and is taken as the most
prominent colour which falls on that
area. There are 32 rings of square re-
gions each with 64 elements. These
can easily be mapped into a rectangu-
lar array which is more suited to pro-
cessing within a computer program.
The array of the same scene is shown
in the bottom half of �gure 1, where
each row represents one ring. The rings
from the fovea to the periphery map to
the top to bottom rows, respectively.
This foveal representation of 2,000 pix-
els signi�es a substantial reduction in
the amount of the information that
needs to be processed, compared with
the standard uniform image of 60,000
pixels covering the same �eld of view.

3 Fixation input signal

In succeeding sections we describe how particular regions of interest in a scene
are segmented from the background. Since each row and column of the pixels,
in the foveal distribution, that make up the region of interest represent the
direction and magnitude from the centre of the �eld of view we are able to
derive a �xation signal which can be used as the input to a standard PCT
control system. Sparks [5] reports that animal visual �xation works in a similar
manner. Populations of activated cells in a neural map in the superior colliculus
de�ne the direction and magnitude of eye movements.

The �xation signal is derived by simply taking the mean of all the position
vectors within the region of interest. Figure 2c shows the foveal representation
of �gure 2a where the small white blob corresponds to the white circle in 2a.
The dark line in 2a from the central cross hair is a visual representation of the
�xation input signal derived from the mean of the position vectors of the blob.
Figure 2b shows the end result of control of the �xation signal. The cross hair
tracker is now centred on the target circle. Notice in 2d that the circle now
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corresponds to a white band in the foveal view. What has happened is that the
tracker has moved until all the position vectors are in equilibrium (their average
is zero) resulting in the �xation on the centroid of the region.

The side e�ect of �xation on the centroid occurs not only in regular geometric
�gures but also for irregular shapes as shown in �gure 3. The image in �gure 3a
contains a number of irregular coloured shapes. The foveal view when �xated
on the centroid of each object is shown in �gure 3b.

(a) (b)

(c) (d)

Figure 2: A simple, single-level �xation control simulation. Images (c) and (d)
are the foveal representations of the initial (a) and �nal (b) uniform scenes,
respectively.

4 Image and Robot output

Our experiments are performed within static images, o�-line, and in real-time
with live static images as well as with a PUMA700 robot arm and camera
system. In the static experiments the movement of the robot is represented by
a moving cross-hair. The input which is controlled is the size of the o�set from
the centre view to the target, with the reference signal being zero. The error
signal, therefore, is the same as the input signal.
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(a) (b)

Figure 3: Simple colour �xation. a) The image of simple coloured �gures, b)
The foveal view when �xated on the �gures, clockwise from top left.

The output signal is the direction and velocity of the movement towards
the target, the velocity being a linear function of the error signal. So, as the
sensor centre gets closer to the target the velocity decreases until �xation, when
the error will be zero and, therefore, the velocity. Relating the error signal to
the velocity, in this way, avoids oscillations and jerky movements as �xation is
reached.

With the real-time controller it is possible to execute commands de�ning the
direction and velocity of movement required. The image processing is performed
in parallel with the robot movements and so it is not necessary to wait for a
movement to cease before updating the error signal. Also commands can be
sent to the controller while the robot is in motion which override all previous
commands. In this way we are able to continually monitor and control the
�xation signal.

Control within static views is handled in the same way with the exception
that the movement in each iteration is computed discretely from the current
desired velocity and the length of time of each iteration.
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Figure 4: On the left is the input function for the lowest level, the RGB image.
On the right the higher levels derived from a 3x3 pixel region of its preceding
level.

5 Single-level Control

Single-level control is su�cient for tracking simple lights or areas in grey-level
or colour scenes. Areas within an image of a particular grey-level range (such as
the brightest) can easily be segmented, from which the �xation signal of a blob
can be derived. Similarly for colour regions, by de�ning the upper and lower
thresholds for the red, green and blue values. Figures 2 and 3 show examples of
tracking to simple regions in simulated images. Tracking experiments to simple
lights and single-coloured objects have been performed successfully in real-time
with the robot.

6 Object model representation and acquisition

A couple of problems arise when extending tracking control to multi-coloured
objects,

� determining the RGB values of the di�erent colours which belong to a
target object and,
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Figure 5: The two level colour processing control system used in our experi-
ments. The outputs from these levels, of the magnitude and direction to the
target, de�ne the input to the highest level (�xation) control system.
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� distinguishing between areas of the same colour which belong to di�erent
objects (or the background)

The �rst problem is partly addressed by the method of model acquisition
employed. The target object is isolated from its surroundings and the RGB
vectors at each pixel are recorded and clustered (for the purposes computational
e�ciency) into a small (10-20) number of ideal vectors which are said to represent
the input vector weights for the object when it is assumed to be under perfect
control.

Input vectors at higher, additional levels are derived by examining a 3x3 area
of the preceding level. Within this area the feature types are counted giving an
input vector which is the length of the number of possible features (see �gure
4). Adding these higher levels partly solves the second problem as the input
vectors will be more speci�c to the target object than to others.

7 Multi-level Control

Figure 5 shows a block diagram of a multi-level control system. Level 0 pro-
cesses the basic RGB vectors and higher-levels (only one is shown) the vectors
from the 3x3 pixel area. The input which is controlled at the highest level is
the perception of the direction and magnitude of movement to the target. The
intermediate, colour processing levels, it should be noted, are not actually con-
trolling variables, but are assumed to deal with uncontrolled perceptions with
previously organised input functions. In the current case of �xation control
we are more concerned with the location of perceptions than with their values.
In the perception types images the non-white pixels show the areas of interest
which have become activated for the particular target. The pixels are colour-
coded according to the feature type, their magnitude indicated in the signals
arrays.

Some preliminary results of the multi-level control system are shown in �gure
6. Each row of images show the results of �xation for each of the Halloween
mask targets, clockwise from top left. The columns, from left to right, show the
results with levels 0, 1 and 2. In each case the starting position is the centre
of the image and the cross-hair indicates the end position (which should be the
nose of each face) with the dark line showing the course of �xation.

From the left column it can be seen that control, solely with level 0, is
poor. Although �xation is made towards the correct targets interference from
background and extraneous signals adversely a�ects the �xation signal. Control
which includes level 1 (centre column) is greatly improved, with �xation termi-
nating, correctly, at the centre of the target face each time. Including another
level (level 2, right column) does not seem to improve control further and in
fact seems slightly worse. However, this is probably more to do with the fact
that much of the signal is lost at this level than with higher levels not being of
bene�t. Given the instability of the input signal at higher levels we limit the
hierarchy to the lower two feature processing levels.
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Figure 6: Multi-level control. Each row shows the results of �xation control to
each of the faces (clockwise from top left) at levels 0, 1 and 2.
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8 Conclusions

The �xation system presented in this paper performs well in real-time on simple
lights and single coloured �gures in synthetic and real scenes. Results have also
been presented of some preliminary work concerning �xation to more complex,
multi-coloured objects. Control improves with added levels in a hierarchy. Each
level embodies signals which are more speci�c to the target object enabling the
target to be more easily distinguished from its surroundings. The main problem
is deriving the input functions and their weights. In the present scheme the
signals at the higher levels are rather impoverished with much of the lower level
inputs being lost sometimes resulting in erratic control. Future work would
bene�t from further investigation into the reorganisation and development of
the input functions.

We have presented some preliminary results in o�-line images which show
that reasonable �xation control, to complex objects, can be achieved with signals
based only upon colour. Control may be improved further by including feature
dimensions such as edges and motion to add even greater discrimination.
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